Embedding Similarity aided Relationship Prediction in Heterogeneous Networks

Pramod Srinivasan and Vipul Venkataraman
Guided by Dr. Meng Jiang
Outline

• Problem Statement
• PathPredict: Recap + Issues
• Using Embedding Similarity
• Workflow of our approach
• Experiments + Results
• Future work
Introduction

• Link prediction: Important problem with varied applications

• Our goal: Efficient relationship prediction in heterogeneous networks

 • DBLP

 • Task: Future acceptance (author, venue)
Path Predict: Workflow

- Facilitates testing significance of topological features
Issues with Path Predict
Intuition

• Challenge: Sparsity of the original network
 • 3-partite
 • Less informative meta-path features
• Key idea: Learn node similarity using network embedding
 • Construct richer meta-paths!
• Can use any off-the-shelf embedding technique
LINE: Quick Recap

- LINE: Large-scale Information Network Embedding
- Embeds large networks into low dimensional vector spaces
- Highly parallelizable!
- Preserves both local and global network structures
 - First order proximity
 - Second order proximity
Similar Authors

[Diagram of a network with nodes labeled Author, Paper, and Venue]
Similar Papers
Similar Papers
Similar Papers
Similar Venues
Similar Venues
Similar Venues
Heterogeneous Similarity
Densification of the original network
Workflow

1. Input Heterogeneous Graph
2. Extract Topological features using Metapaths
3. Densify sparse graph using node embeddings
4. More accurate predictions!
5. Blackbox classifier
6. Extract richer topological features
Workflow

Input Heterogeneous Graph → Extract Topological features using Metapaths → Densify sparse graph using node embeddings → Extract richer topological features → More accurate predictions!

Our contribution
Experiments
Experiments: Author Productivity

Insights:

• 1st order proximity not as good as 2nd order proximity
• This is possibly due to the lack of AV and AA edges in the original network
• Can we circumvent this, and reduce sparsity even further?
Enriching the APV network
Enriching the APV network
Enriching the APV network
Enriching the APV network
Experiments: Head-to-head
Insights:

- Introduction of AA and AV edges in the heterogeneous network improved accuracy even further!

- Gains from both 1st-order and 2nd-order embedding
Insights:

- The following metapaths singlehandedly outperform path-predict: AV, AAV, AVV
- These metapaths are not present in the original network
- Illustrates why embedding is useful
Insights:

- The following metapaths singlehandedly outperform path-predict: AV, AAV, AVV
- These metapaths are not present in the original network
- Illustrates why embedding is useful

Experiments: Significant Features

47% improvement in accuracy!
Future Work

• Use PTE instead of LINE

• Test performance with respect to change in network sparsity

• Extend method to other relationship prediction tasks:
 • Future co-authorship (a-p-a)
 • Future co-attendance (a-p-v-p-a)

• Testing model generalization
 • Different 5/10 years vs 5 years
Conclusion

• Combating network sparsity with node similarities obtained from embedding techniques

• Enriching the APV network with links to capture high first order proximity

• Significant features that capture latent information

• Achieved 47% increase in accuracy from PathPredict
Supplementary Slides
Experiments: Significant Features
Experiments

![Graph showing accuracy over author productivity]

The graph illustrates the accuracy of different algorithms (apv-line, av-line, path-predict) across varying levels of author productivity.